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ABSTRACT 
The effects of tube inclination and Grashof number on the fully developed hydrodynamic and thermal 
fields are investigated numerically for laminar ascending flow of air and water in uniformly heated circular 
tubes. The effects of the buoyancy induced secondary flow on the hydrodynamic and thermal fields are 
complex and strongly dependent on the Grashof number, the Prandtl number and the tube inclination. 
The influence of these parameters on the intensity of the secondary flow, on the distortion of the axial 
velocity profile and of the temperature field from the corresponding distributions for pure forced flow, as 
well as on the circumferential variation of the local shear stress and of the local Nusselt number are 
analysed. The average shear stress is higher than for pure forced flow and it increases with both the tube 
inclination and with the Grashof number. The average Nusselt number is higher than for pure forced flow 
and increases with the Grashof number. For a given fluid and Grashof number there exists an optimum 
tube inclination which maximizes the average Nusselt number. Correlations for the average Nusselt number 
in terms of Gr and Pr are presented for four different tube inclinations. 

KEY WORDS Laminar flow Shear stress SIMPLER method 

NOMENCLATURE 

A non-dimensional coefficient in (13) Pr Prandtl number 
b, c non-dimensional exponents in (13) q″ rate of heat flux at the wall (W/m2) 
cp specific heat of the fluid (J/kg K) R inside radius of the tube (m) 
Gr Grashof number (defined in (10)) Ra Rayleigh number 
g local acceleration due to gravity (m/s2) Re Reynolds number (defined in (10)) 
k thermal conductivity of the fluid r non-dimensional radial coordinate 

(W/m K) S non-dimensional source term in 
Nu local Nusselt number (function of θ); momentum and energy equations 

a bar over this symbol defines the T non-dimensional fluid temperature 
average circumferential Nusselt Tw fluid temperature at r = 1 (function of 
number θ); a bar over this symbol defines the 

P local pressure (function of r, θ, z); a average wall temperature 
bar over this symbol defines the V0 average axial velocity (m/s) 
average pressure in a cross-sectional V non-dimensional fluid velocity 
normal to the tube axis z non-dimensional axial coordinate 
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Greek letters (function of θ); a bar over this symbol 
α tube inclination (degrees from defines the average circumferential 

horizontal) shear stress 
β expansion coefficient of the fluid (K−1) ψ non-dimensional stream function for 
ΔT* reference temperature difference the secondary flow 

(ΔT* = q″.R/k) 
θ angular coordinate (degrees from Indices 

vertical) r, θ, z define respectively the radial, 
μ fluid viscosity (N s/m2) angular, axial components 
v fluid kinematic viscosity (m2/s) min, max define respectively the minimum, 
Τ non-dimensional shear stress at r = 1 maximum value of a variable 

INTRODUCTION 

Laminar flow with combined forced and free convection occurs in different thermal applications 
such as heat exchangers, solar collectors, pipelines and nuclear reactors. In such situations two 
symmetrical vortices are generated as warm fluid rises near the wall under the effect of buoyancy. 
The axisymmetry of the flow field is destroyed and isotherms are drastically different from the 
concentric circles corresponding to pure forced flow. Nguyen and Galanis1,2 have presented 
detailed numerical results for the simultaneously developing hydrodynamic and thermal 
boundary layers in horizontal uniformly heated tubes. 

In this paper we investigate the effect of tube inclination, as well as that of the Grashof and 
Prandtl numbers, on the fully-developed flow in uniformly heated tubes. For this thermal 
boundary condition, the vortices generated by natural convection persist over the entire heated 
length of the tube. This is not the case for uniform temperature tubes, since in this case the fluid 
reaches a uniform temperature and natural convection effects disappear in the fully-developed 
region. 

The problem under study has been investigated experimentally3−5 but exhaustive results are 
available only for horizontal and vertical tubes. It has also been treated analytically with various 
approaches which did not always give satisfactory agreement with measured values. Thus, the 
perturbation technique6 gives unrealistically high estimates of the Nusselt number even at 
moderate values of the Rayleigh number. Boundary layer solutions7 seem to be valid only for 
relatively large Rayleigh numbers. The boundary-vorticity method8 has also been used. The 
literature includes certain contradictory results with respect to the influence of tube inclination 
on the Nusselt number: some authors6 conclude that there exists an optimum tube inclination 
which maximizes the Nusselt number while experimental and analytical results by others5,8 do 
not confirm this result. The present authors have addressed this problem for the case of air9 

and have discussed in detail the effects of the Grashof number on the flow and thermal fields 
in the case of that same fluid10. 

MODELLING AND SIMULATION 

The problem considered is the fully-developed ascending laminar flow under combined forced 
and free convection inside an inclined circular tube with uniform heat flux q″ at the wall (Figure 
1). All properties of the fluid are assumed constant except for the density in the buoyancy terms 
(Boussinesq's assumption). The heat generation due to viscous dissipation is neglected. 
Furthermore, in the fully-developed region the following conditions must be respected: 

—no axial gradient for any velocity component; 
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—constant uniform axial pressure gradient (this quantity is unknown and must be calculated 
as part of the solution); 

—constant uniform axial gradient for the fluid temperature (this quantity is known and is 
proportional to the imposed wall heat flux q″). 

With these considerations, the dimensionless governing equations (mass, momentum and 
energy) in cylindrical coordinates are as follows: 

The source terms for the momentum and energy equations are respectively: 

In the above equations, the velocity components are non-dimensionalized with respect to the 
mean axial velocity V0, the pressure with respect to the quantity pV20 and all lengths with respect 
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to the tube radius R. The non-dimensional temperature represents the difference between the 
local value and the bulk temperature in the corresponding cross-section divided by ΔT* = q″R/k 
(k is the fluid conductivity). The governing dimensionless parameters are defined as: 

Re = V0R/v Gr = gβR3 ΔT*/v2 Pr = cpμ/k (10) 
It is important to note that in the source term Sz (8) of the axial momentum equation, the 

pressure gradient, which in general depends on r, θ, and z, has been replaced by the corresponding 
axial gradient of the cross-sectional average pressure d The latter is obviously independent 
of r and θ. Furthermore, for a fully-developed flow which is the case studied here, this pressure 
gradient is in fact a constant for a given set of Gr, Re, Pr, and a values. The use of the 
axial gradient of the average pressure instead of the local pressure gradient has been originally 
proposed by Patankar and Spalding11 for three-dimensional parabolic flow problems. This 
approach was later extended and widely used for other situations, in particular for fully developed 
internal flows with mixed convection12,13. 

It should also be noted that for vertical tubes (α = 90°) the flow is one-dimensional (Vr = Vθ= 0) 
since the buoyancy force acts in the axial direction. For this geometry, (1) is trivial, (2) and (3) 
show that the pressure is independent of r and θ, while the left hand side of (4) and (5) are 
identically zero. The simplified set of equations resulting by replacing Sz from (8) in (4) and Se 
from (9) in (5) is independent of the Prandtl number. Thus for vertical tubes, the hydrodynamic 
and thermal fields depend only on the Reynolds and Grashof numbers; they are the same for 
all fluids. This property of flow in vertical tubes has also been reported by Iqbal and Stachiewicz6 

and Petukhov et al.4. 
The governing equations constitute a highly coupled system. They are subjected to the usual 

hydrodynamic (no slip) and thermal (uniform radial temperature gradient) conditions at the 
wall. The numerical method employed to solve the problem is based on the SIMPLER method14. 
The pressure equation and the pressure-correction equation have been derived from the continuity 
and momentum equations; the first calculates the pressure field P(r, θ) in the domain for a 
guessed velocity field and an arbitrary value of the unknown axial pressure gradient, while the 
second performs necessary corrections on the velocities in order to satisfy mass conservation. 
It is important to note that according to the SIMPLER method14, and for the problem under 
study for which all velocity components on the boundaries are given, there is no need to specify 
the corresponding pressures. Furthermore, only pressure differences rather than absolute values 
are relevant. Once convergence is achieved, the average axial non-dimensional velocity is 
evaluated; if it is different than unity, i.e. if the overall mass balance is not satisfied, the whole 
procedure is repeated for a new value of the unknown axial pressure gradient. This iterative 
procedure finally results in a coherent solution giving the temperature, velocity and pressure 
distributions in a section normal to the tube axis, as well as the axial variation of the pressure. 

Since the flow field is symmetrical about the vertical diameter the solution must only be 
calculated over half of the circular cross-section. Several different grids were used to insure that 
the results are independent of the number of nodes used in the discretization process. Table 1 
shows the effect of grid size on the computed average Nusselt number for Gr = 1000, Pr = 0.7, 
Re = 250 and a horizontal tube (α = 0°). The computed axial velocity profile and temperature 

Table I Effect of grid size on average Nusselt number 

Number of grip points 
in tangential direction 

15 
17 
25 
29 

Number of grid points 
in radial direction 

17 
21 
28 
30 

4.82 
4.81 
4.80 
4.80 
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distribution along the vertical diameter for two grids (29 × 30 and 35 × 35) were also compared 
and found to be identical for all practical purposes15. In light of those results all further 
calculations were performed with the 29 × 30 grid. 

The computer program has also been successfully validated by comparing the numerical results 
with the analytical solution for the limiting case of negligible buoyancy forces. Both velocity 
and temperature profiles as well as the Nusselt number and axial pressure gradient agree 
exceptionally well with the analytical values15. 

RESULTS AND DISCUSSION 

For the combined forced and free convection, numerical simulations have been performed for 
two fluids (air, Pr = 0.7 and water, Pr = 7), a Reynolds number of 250, tube inclinations ranging 
from α = 0° (horizontal) to α = 90° (vertical), and several values of the Grashof number resulting 
in a Rayleigh number range extending from zero to 2.1 × 106. In order to illustrate the effects 
of the Grashof number, the tube inclination and the Prandtl number, some typical results are 
presented in the following sections. 

Velocity and thermal fields 
Axial velocity profiles. Figures 2a and 2b show the effects of the Grashof number on the axial 

velocity profile along the vertical diameter θ = 0, π for Pr = 7 and α = 0°, α = 60° respectively. 
Under the effects of natural convection, the symmetry of the flow field is destroyed and it becomes 
quite different from the one corresponding to pure forced flow (Gr = 0). The maximum axial 
velocity does no longer occur on the tube centreline and is not always equal to 2.0. As shown 
by these Figures, the position and magnitude of the maximum axial velocity are affected by 
both the Grashof number and the tube inclination. For horizontal tubes, the maximum occurs 
below the centreline while for steeply inclined tubes and high Grashof numbers the maximum 
occurs above the centreline. This effect has also been reported by Nguyen16 and by Iqbal and 
Stachiewicz6. This behaviour results from the effect of natural convection on the axial forced 
flow, which is quite different depending upon the tube inclination considered. For horizontal 
tubes, the buoyancy forces are perpendicular to the tube axis. The resulting secondary flow, 
which is more significant in the lower part of the tube (see Figure 5), pushes the fluid with high 
axial velocity towards the bottom of the tube. This explains why for horizontal tubes the 
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maximum axial velocity occurs below the centreline. Furthermore, in the upper region of the 
horizontal tube where the secondary flow is weak, the axial velocity profile is essentially 
independent of the Grashof number. On the other hand, for steeply inclined tubes (α = 60° for 
example) the buoyancy forces act predominantly in the axial direction. Since these axial forces 
are more important in the upper part of the tube where the temperatures are higher (see Figure 
3b), the axial velocity in this region is higher. For sufficiently high Grashof numbers, this can 
result in a maximum of the axial velocity well above the tube centreline. 

In the case of vertical tubes (α = 90°), numerical results not shown here indicate that the axial 
velocity profile is, as expected, axisymmetric15. At low Grashof numbers the maximum axial 
velocity occurs on the tube centreline; but as the Grashof number increases (due to an increase 
of the imposed wall heat flux q″), the position of the maximum axial velocity moves outwards 
towards the wall and the fluid near the tube centreline becomes progressively slower. Similar 
results have been obtained by Cheng and Hong8 and by Collins17. 

Fluid temperature profiles. Figures 3a and 3b illustrate the effects of the Grashof number on 
the dimensionless water temperature profiles along the diameter θ = 0, 180° for α = 0°, α = 60°, 
respectively. These profiles are very different from the axisymmetric one corresponding to pure 
forced flow (Gr = 0). The minimum field temperature occurs well below the centreline and moves 
progressively towards the lower wall as Gr increases. In the upper region of the tube (r > 0.25) 
the dimensionless fluid temperature is for all practical purposes independent of Gr in the case 
of horizontal tubes since the secondary flow is almost non-existent in this region of the tube 
and, as stated earlier, the axial velocity profile is essentially independent of the Grashof number. 
This result indicates that the difference between the local and bulls temperatures increases 
proportionally with the increase of the Grashof number. In the case of steeply inclined tubes 
however, the dimensionless fluid temperature in the upper region decreases as the heat flux (and 
the Grashof number) increases due to the fact that the axial velocity profile in this region is 
considerably influenced by the Grashof number (see Figure 2b). 

For vertical tubes the fluid temperature profile is axisymmetric. The difference between Tmax, 
occurring at the wall, and Tmin, occurring at the centre, decreases slightly as the Grashof number 
increases. 

Wall temperature distribution. Figures 4a and 4b illustrate the effects of the Grashof number 
on the angular distribution of the wall temperature for α = 0°, α = 60° respectively. Figure 4a 
also provides a comparison of the numerically predicted wall temperature distribution for α = 0°, 
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α = 60° respectively. Figure 4a also provides a comparison of the numerically predicted wall 
temperature distribution for α = 0°, Pr = 7 and Gr = 10,000 with corresponding results from an 
experimental correlation by Petukhov and Polyakov18. Their agreement is quite acceptable. 
The calculated results indicate that the temperature difference between the top (θ=0°) and 
bottom (θ = 180°) of the tube increases with the Grashof number, most notably for the horizontal 
tube. The circumferential variation of the wall temperature is particularly important in the upper 
region of the tube (0 ≤ θ ≤ 90°) where the hot fluid resides. In the lower region of the tube, where 
the cold fluid is found, the wall temperature remains essentially uniform and its value decreases 
as the Grashof number increases. For sufficiently high values of the Grashof number, the wall 
temperature in the lower part of horizontal tubes is negative15, i.e. lower than the fluid bulk 
temperature. This numerical prediction has been confirmed experimentally by Petukhov4 and 
by Newel and Bergles19. 

Secondary flow structure and isotherms. In order to understand better the effects of natural 
convection, the streamlines and isotherms in a plane normal to the tube axis for α = 0°, Pr = 7 
and Gr = 1000, 4000, 10,000 are shown in Figures 5a, 5b and 5c respectively. We observe that, 
in general, the secondary flow is more important in the lower part of the cross-section. As the 
Grashof number increases the streamlines become more distorted and asymmetrical with respect 
to the horizontal diameter while their gradient in the vicinity of the tube wall becomes much 
more important than in the central and upper regions of the tube. Furthermore, the strength 
of the secondary flow, indicated by the maximum value of the stream function ψmax, also increases 
considerably with the Grashof number. It is also observed that the vortex centre moves 
progressively downwards and slightly towards the tube wall as Gr increases. 

The effects of natural convection on the thermal field are quite evident in Figure 5. All isotherms 
are distorted and quite different from the concentric circles which correspond to pure forced 
flow. It is interesting to observe that in the central and upper parts of the tube, temperature 
gradients are quite low. This explains the low intensity of the secondary flow in this region. In 
the lower part, however, particularly in the vicinity of the tube wall, the temperature gradient 
is important and, consequently, the corresponding secondary flow is intense. When the Grashof 
number increases, all these effects become more pronounced. Isotherms become more distorted, 
particularly in the central region where they are almost horizontal. The cold fluid zone (i.e. the 
zone where T < 0), as well as the position of the minimum fluid temperature, move slightly 
downwards. It is also important to mention that this effect on the position of the minimum 
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fluid temperature has been observed by several other researchers such as Nguyen16, Siegwarth20 

and Hong21. The difference between the dimensionless maximum fluid temperature (located at 
the top of the tube, i.e. at θ = 0, r = 1) and the corresponding minimum value increases with the 
Grashof number and is a clear indication of the importance of the secondary flow. 

Similar trends on the influence of the Grashof number have been also obtained for inclined 
tubes15. Figures 6a and 6b illustrate for example the secondary flow structure and isotherms for 
α = 60°, Pr=7 and a Grashof number of 1000 and 10,000 respectively. 

Effects of Prandtl number on velocity and thermal fields. A comparison of the velocity and 
temperature profiles for water (Pr = 7) presented in Figures 2 to 6 with corresponding results 
for air (Pr = 0.7) published previously10 is quite interesting. 

Thus, with respect to the axial velocity profile, it can be observed that the departure from 
the Poiseuille parabolic profile is much more significant for air. Indeed, for α = 0° and Ra = 7 × 103, 
the maximum axial velocity for air is 1.94 and occurs at r = −0.47 while the corresponding 
values for water are 2.0 and r = −0.06. Similarly, for α = 60° and Ra = 7 × 103 the maximum 
axial velocity for air is 1.76 and occurs at r = 0.07 while the corresponding values for water are 
1.96 and 0.02. This observation concerning the effect of the Prandtl number on the primary 
flow field is confirmed for all tube inclinations and for the whole range of Gr, or Ra, under 
consideration. By extension, it can be argued that as the Prandtl number increases, the axial 
velocity profile for all tube inclinations and Grashof numbers tends to the axisymmetric Poiseuille 
profile. This property has been used by several authors (see, for example, Siegwarth20 and 
Hong21) who studied mixed convection in horizontal tube flow for a fluid with Pr → ∞ 
considering that the axial profile is axisymmetric and parabolic. 

Similarly, the effects of natural convection on the intensity of the secondary flow field and on 
the fluid temperature stratification are more pronounced for air than for water. This observation 
is corroborated by an examination of the secondary streamlines and isotherms for water (Figure 
5a) and air (Figure 5c of Reference 10) corresponding to α = 0° and Ra = 7 × 103. Thus, the 
intensity of the secondary flow as indicated by the value of ψmax is 7.5 times greater in air than 
in water, although the position of the vortex centre and the shape of the streamlines is essentially 
the same for both fluids. Furthermore, the temperature stratification, characterized by the 
difference Tmax − Tmin, is considerably higher for air than for water, even though the shape of 
the isotherms is the same for both fluids. 

The fact that these effects are less important in water than in air is due to the simultaneous 
effects of water's highly viscosity (greater resistance to the establishment of the secondary flow) 
and lower diffusivity (which restricts the importance of the driving buoyancy force). 
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Local heat transfer coefficient and wall shear stress 
Figures 7a and 7b show respectively the influence of tube inclination and Grashof number on 

the circumferential distribution of the local Nusselt number (in the chosen adimensionalization 
scheme Nu = 2/Tw) for both air and water. For nearly horizontal tubes (α ≤ 30°) Nu varies 
considerably along the tube perimeter, especially in its lower part where the values are very 
high, for water in particular. For nearly vertical tubes the circumferential variation disappears 
since the flow tends to become axisymmetric and the Nusselt number is everywhere higher than 
the value of 4.36 corresponding to pure forced flow. The influence of the Grashof number on 
the local heat transfer coefficient is important since the intensity of the secondary flow increases 
appreciably with Gr, but as shown in Figure 7b its effect for horizontal tubes is only evident in 
the lower part of the tube. This result is consistent with the earlier observation that for horizontal 
tubes the secondary flow is most significant in the lower part of the tube, especially at high 
Grashof numbers. 

Figure 8a illustrates the effect of tube inclination on the circumferential distribution of the 
wall shear stress for air and water with Gr = 4000: 

For the case of air the product τ ∙ Re varies considerably around the tube perimeter, especially 
for a horizontal tube. This variation decreases as the tube inclination increases and in the limiting 
case of a vertical tube a uniform value of τ ∙ Re = 5.00 has been obtained. The average wall shear 
stress: 

is also dependent on the tube inclination: for α = 0°, 30°, 60° and 90° the value of Re for air 
is respectively 4.62, 4.72, 4.80 and 5.00, that is considerably higher than the value of 4.00 
corresponding to pure forced flow. For the case of water, the effect of tube inclination on the 
circumferential distribution of τ ∙ Re is quite different. Thus, for flow in a horizontal tube with 
Gr = 4000, the value of τ ∙ Re does not vary much around the tube perimeter. As the tube 
inclination increases, the wall shear stress increases in the upper part of the tube while it decreases 
in the lower part. However, for the limiting case of the vertical tube a uniform value of τ ∙ Re = 5.00 
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(the same as for air) is obtained. The average wall shear stress Re for water is 4.10, 4.24, 4.38 
and 5.00 for α = 0°, 30°, 60° and 90° respectively. Thus, the effect of tube inclination on the 
average wall shear stress is qualitatively the same for the two fluids but its quantitative effect 
is more important in the case of water. 

Figures 8b and 8c show the effect of the Grashof number on the circumferential distribution 
of the wall shear stress for air and water respectively. For air in horizontal tubes, the effect of 
θ on τ ∙ Re is qualitatively the same: for all three non-zero values of Gr we observe an inflexion 
point at about 80°; in the upper region of the tube (θ < 80°) the local shear stress τ ∙ Re is lower 
than 40, the value corresponding to pure forced flow, and the influence of Gr is not significant; 
in the lower part of the tube (θ > 80°), however, the values of τ ∙ Re are considerably higher than 
that corresponding to pure forced flow and increases considerably with Gr. This difference 
between the upper and lower regions of the tube is, of course, related to the intensity of the 
secondary flow and the resulting distortion of the axial velocity profile from the axisymmetric 
Poiseuille distribution. The average value of τ ∙ Re for horizontal flow of air increases significantly 
with Gr: its value for Gr = 0, 1000, 4000 and 10,000 is 4.00, 4.24, 4.71 and 5.15 respectively. For 
air in inclined tubes (α = 60°) the circumferential distribution of τ ∙ Re is very different from that 
in horizontal tubes: its values are always higher than 4.0 and the effect of Gr is more significant 
in the upper region of the tube. For water (Figure 8c) in horizontal tubes the behaviour is similar 
to that for air but the effect of Gr is less significant, it is interesting to note that for relatively 
high heat fluxes (Gr ≈ 10,000) a minimum value of τ ∙ Re is observed at θ ≈ 75°. For flow of water 
in inclined tubes, higher values of τ ∙ Re occur in the upper region of the tube, as for air; the 
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difference between the value at the top (θ = 0) and the bottom (θ = 180°) of the tube is much 
more important than for air. 

Average heat transfer coefficient 
Figure 9 shows the effects of the governing parameters Gr, Pr and α on the average Nusselt 

number defined as: 

where is the dimensionless average temperature on the wall perimeter. For a given tube 
inclination and Grashof number, is higher for water than for air except in the case of vertical 
tubes. Indeed, for α = 90°, the numerical results confirm the theoretically established property 
that the flow and thermal fields are independent of the nature of the fluid. Furthermore, the 
results of Figure 9 show that for Gr < 104, the average Nusselt number is essentially independent 
of the tube inclination in the case of air. In the case of water, however, this is only true for 
α < 60° while for nearly vertical tubes the average Grashof number decreases rapidly as a increases. 
This behaviour has been observed experimentally by Barozzi et al.5. For high Grashof numbers 
however, the average Nusselt number increases considerably when α increases from 0° to 30°. 
It decreases when α increases from 60° to 90° but this effect is much more pronounced for water 
than for air. The results of Figure 9 furthermore indicate that when natural convection effects 
are small (i.e. for small values of Gr), decreases monotonically as a increases while for larger 
values of Gr there exists a definite optimum inclination for which reaches a maximum. This 
is an important result since it reconciles the apparent contradiction between the analytical 
prediction of an optimum non-zero inclination by Iqbal and Stachiewicz6 with the numerical 
results by Cheng and Hong8 and, more particularly, with the experimental data of Barozzi et 
al.5 who did not observe any evidence of such an optimum inclination. 

The effect of Gr on is shown in Figure 10 for α = 30° and both fluids under consideration. 
Similar results have been obtained for α = 0°, 60° and 90°. For all these inclinations, the calculated 
values indicate that for both fluids increases monotonically with Gr and can be correlated 
by an expression such as that proposed by: 
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Table 2 Constants for the correlation expressing 

Tube inclination 

0° 
30° 
60° 
90° 

A 

325.6 
754.1 

1038 
7500 

b 

0.175 
−0.208 
−0.196 
−1 

c 

0.125 
0.215 
0.219 
0.270 

where Nu0 = 4.364 is the Nusselt number for pure forced flow with uniform heat flux at the wall. 
The constants A, b and c depend on the tube inclination. Their values, calculated by using the 
least-squares curve-fitting technique from the numerical results obtained with Re = 250 and 
Ra ≤ 2.1 × 106, are given in Table 2. The correlations for α = 30° are also shown in Figure 10. 

Finally, Figure 11 provides a comparison of the proposed correlation for water flow in 
horizontal tubes with the experimental results of Morcos22 and with previously published 
correlations. The correlation attributed to Morton by Mori23 was obtained by a perturbation 
technique and is obviously valid only for very small Grashof numbers. The correlation attributed 
to Siegwarth by Barozzi5 as well as the one proposed by Petukhov and Polyakov3 are in good 
agreement with the experimental results for metal tubes while our correlation is in better 
agreement with the experimental values measured in glass tubes. This is to be expected since 
experimentally developed correlations are obtained with the heat flux condition applied on the 
outside surface of the tube: for metal tubes with high conductivity, the resulting thermal condition 
on the interior surface (at r=l) is closer to a uniform temperature while for tubes with low 
conductivity (such as glass tubes) the thermal condition at r = 1 is closer to the uniform thermal 
flux condition used in the present numerical study. Therefore our numerical results calculated 
with a uniform heat flux condition at the fluid-solid interface, correspond to the experimental 
values measured by Morcos in glass tubes: their close agreement is a clear indication of the 
accuracy of the model and the precision of the numerical technique used in this study. 

CONCLUSION 

In this study, the effect of natural convection on the fully developed laminar upward flow in an 
inclined uniformly heated tube has been numerically investigated. The results have shown that 
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the effects of the buoyancy induced secondary flow on the hydrodynamic and thermal fields are 
very complex and strongly dependent on the Grashof number, the Prandtl number and the tube 
inclination. In particular it has been shown that: 
—the intensity of the secondary flow is greater for air than for water, decreases as the tube 

inclination increases and increases with the Grashof number; 
—the distortion of the axial velocity profile and of the temperature field from the corresponding 

distributions for pure forced flow is greater for air than for water and increases with the 
Grashof number; 

—the local Nusselt number for low tube inclinations varies considerably along the tube perimeter 
for both fluids and is very different from the value corresponding to pure forced flow; the 
difference between its extreme values increases with the Grashof number; 

—the local shear stress varies considerably along the tube perimeter; the difference between its 
extreme values is higher for air than for water; 

—the average shear stress is higher for air than for water and increases with tube inclination 
and with the Grashof number; 

—the average Nusselt number increases with the Grashof number for both fluids and any tube 
inclination; for a given fluid and Grashof number there exists an optimum tube inclination 
which maximizes the average Nusselt number (at very low Grashof numbers the maximum 
Nusselt numbers occurs for horizontal tube); for a given inclination and Grashof number, the 
average Nusselt number for water is higher than the one for air. 
Appropriate correlations for the average Nusselt number in terms of Gr and Pr have been 

obtained for four different tube inclinations (α = 0°, 30°, 60° and 90°). 
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